THE FIRST NATURAL CONDENSED TANNINS WITH (-)-CATECHIN 'TERMINAL' UNITS

PETRUS J. STEYNBERG, JOHANN F.W. BURGER, BAREND C.B. BEZUIDENHOUDT, JAN P. STEYNBERG, MARTHA S. VAN DYK, AND DANEEL FERREIRA*.

Department of Chemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300 South Africa.

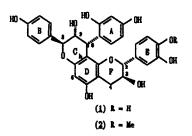
Abstract — The functionalized 2,3-irass-8,9-irass-9,10-cis-3,4,9,10-tetrahydro-21,81-pyrano[2,3-k]chromenes 4 and 6 represent the first naturally occurring condensed tannins with <math>(25,31)-2,3-irass-(-)-catechin 'terminal' moieties; the structure of 4 is unequivocally confirmed by synthesis.

The different classes of naturally occurring condensed tannins are predominated by analogues with a (+)-catechin or (-)-epicatechin[(2l,3S)-2,3-irass- and (2l,3l)-2,3-cisflavan-3,3',4',5,7-pentaol respectively] 'lower' flavan-3-ol unit¹⁻⁵. Prototypes based on (+)-epicatechin[(2S,3S)-2,3-cis] are hitherto restricted to a (4a,8)-bis-(+)-epicatechin^b and a profisetinidin related 2,3-cis-8,9-irans-9,10-cis-3,4,9,10-tetrahydro-21,81-pyrano-[2, 3-k] chromene⁷. Although a large number of structures were confirmed by synthesis, many proposals regarding the absolute configuration of 'terminal' units are based on ¹H NMR and other data incapable of differentiating enantiomeric forms. Coupling constants of the heterocyclic protons of these moieties, i.e. $J_{2,3}$ cs 7.0 and cs 1.0 Hz, are generally accepted as being indicative of (+)-catechin and (-)-epicatechin units respectively. We now report on the natural occurrence of the first oligoflavanoids with (2S, 3I)-2, 3-irans-(-)-catechin 'terminal' units hence emphasizing the pitfalls encountered in defining the absolute configuration of these moieties.

In the methanol extract of the heartwood of Julbersserdis globiflors, a member of the Caesalpinioideae, the (+)-guibourtinidol^a-(4 α ,6)-(+)-catechin- and (-)-epicatechins⁸ are accompanied by a series of C-ring isomerized metabolites, termed phlobatannins⁹, apparently related to the proguibourtinidin biflavanoids. The hexamethyl ether diacetate of one of the 3,4,9,10-tetrahydro-21,81-pyrano[2,3-4]chromenes exhibits coupling constants (J_{2,3} 7.3; J_{8,9} 10.5; J_{9,10} 6.0 Hz) reminiscent of 2,3-*irass*-8,9-*irass*-9,10-*cis* relative configuration^{7,9,10} hence leading to tentative assignment of structure 1 with a (+)-catechin DEF moiety.

a3,4',7-Trihydroxy functionality

HO


R2

B

C

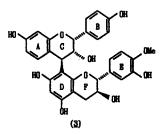
Ð

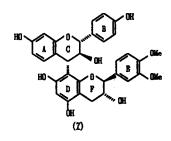
ĊΠ1

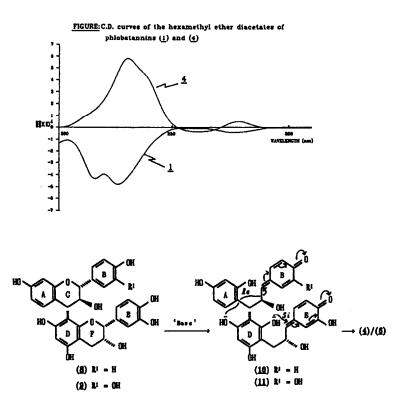
Œ

B

1 MI


ORI


0RJ


A

(4) $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$

($\underline{5}$) $\mathbf{R}^1 = \mathbf{Me}$, $\mathbf{R}^2 = \mathbf{H}$ ($\underline{6}$) $\mathbf{L}^1 = \mathbf{H}$, $\mathbf{R}^2 = \mathbf{0}\mathbf{H}$

Scheme: Proposed route to the in vive formation of phlobatannias (4) and (6)

Treatment of the presumed precursor selectively protected⁷ at 4-OH(E), epiguibourtinidol-(4 β ,8)-(+)-catechin θ -methyl ether 3, with 0.025M NaHCO3-0.025M Na₂CO3 buffer (pH 10) for 22h at 50^oC under nitrogen, gave complete conversion to the 2,3-*irems*-8,9-*irems*-9,10*cis*-3,4,9,10-tetrahydro-2#,8#-pyrano[2,3-Å]chromene 2. It's hexamethyl ether diacetate exhibits ¹H NMR spectral properties identical to those of the corresponding derivative of the natural product. Comparison of CD data, however, indicates an enantiomeric relationship (Figure) for the natural and synthetic products 4 and 2. Since the proguibourtinidin 3 is incapable of epimerization at C-2(F) under basic conditions¹¹, the mirror-image type CD spectra of the derivatives of 1 and 4 strongly indicates a (2S,3#)-2,3*irams*-(-)-catechin DEF moiety for the natural product 4.

Undefined contributions of the chiral centres at 2-, 3-, 8-, and 9-C to the Cotton effects at 260-290 nm in the CD spectra of the derivatives of 1 and 4 necessitates concise synthesis of the enantiomer of 1. Base-catalyzed pyran rearrangement of the (+)-guibourtinidol- $(4\alpha, 8)$ -(-)-catechin di- θ -methyl ether 7, available via standard procedures^{3,7,12}, affords the 2,3-*irass*-8,9-*irass*-9,10-*cis*-tetrahydro-2#,8#-pyrano[2,3-Å]chromene 5. Its methyl ether diacetate exhibits ¹H NMR and CD properties identical to those of the corresponding derivative of the natural product thereby unambiguously confirming the (-)-catechin DEF moiety of the latter.

The structure of the 3-OH(B) analogue $\underline{6}$ from the heartwood of *Baikisea plurijuga* (cf ref. 7) was similarly confirmed by base-catalyzed pyran rearrangement of (-)-fisetinidol- $(4\sigma,8)$ -(-)-catechin. The CD curve of the heptamethyl ether diacetate of $\underline{6}$ is virtually superimposable to that of the derivative of $\underline{4}$ hence establishing their identical absolute configurations.

The (+)-guibourtinidol- and (-)-fisetinidol-(4a,8)-(-)-epicatechins 8 and 9 may feasibly serve as biosynthetic precursors to tetrahydropyrano[2,3-Å]chromenes 4 and 6 via the pyran recyclizations indicated (Scheme) for intermediate quinone-methides 10 and 11 involving both the B- and E-rings⁷. Although phlobatannins 4 and 6 may thus be considered as 'biosynthetic artefacts', demonstration of the presence of the (-)-catechin DEF unit emphasizes the extreme care to be exercised in allocating the absolute configuration of 'terminal' 2,3-*irass*-flavan-3-ol moieties in the various classes of naturally occurring condensed tannins.

Acknowledgements

Support by the Sentrale Navorsingsfonds of this University, Foundation for Research Development, Pretoria, and the Marketing Committee, Wattle Bark Industry of South Africa, Pietermaritzburg, is acknowledged.

REFERENCES

- Weinges, K.; Kaltenhauser, W.; Marx, H-D.; Nader, E.; Nader, F.; Perner, J.; Seiler, D. Justus Liebig's Ann. Chem., 1968, <u>177</u>, 184.
- 2. Haslam, E. Phytochemistry, 1977, 16, 1625.
- 3. Botha, J.J.; Ferreira, D.; Roux, D.G. J. Chem. Soc., Perkin Trans. 1, 1981, 1235.
- Hemingway, R.W.; Foo, L.Y.; Porter, L.J. J. Chem. Soc., Perkin Trans. 1, 1982, 1209.
 Nonaka, G.; Morimoto, S.; Kinjo, J.; Nohara, T.; Nishioka, I. Chem. Pharm. Bull.
- 1987, <u>35</u>, 149. 6. Delle Monache, F.; Ferrari, F.; Marini-Bettollo, G.B. *Gazz. Chim. Ital.*, 1971 <u>101</u>,
- 5. Delle Monache, F.; Ferrari, F.; Marini-Bettollo, G.B. 0822. (Aim. 1881., 1971 101, 387.
- 7. Steynberg, J.P.; Burger, J.F.W.; Young, D.A.; Brandt, E.V.; Steenkamp, J.A.; Ferreira, D. J. Chem. Soc., Perkin Trans. 1, 1988, 3323.
- 8. Pelter, A.; Amenechi, P.I.; Warren, R.; Harper, S.H. J. Chem. Soc. (C), 1969, 2572.
- 9. Steenkamp, J.A.; Steynberg, J.P.; Brandt, E.V.; Ferreira, D.; Roux, D.G. J. Chem. Soc., Chem. Commun., 1985, 1678.
- 10. Burger, J.F.W.; Steynberg, J.P.; Young, D.A.; Brandt, E.V.; Ferreira, D. J. Chem. Soc., Perkim Trans. 1, 1989, 671.
- 11. Whalley, W.B. in 'The Chemistry of Flavonoid Compounds', ed. T.A. Geissman, Pergamon, 1962, p.441.
- 12. Foo, L.Y.; Porter, L.J. J. Chem. Soc., Perkin Irans. 1, 1983, 1535.

(Received in UK 5 February 1990)